电感式传感器线性精度的绝对值受限于量程,即量程越大,精度越低。其测量原理决定其很高分辨率的可无限线性细分,故而不存在固有精度的问题。行业中,电感式轮廓仪一般应用于微小量的轮廓表面测量,例如轴承行业中的滚子、滚道的凸出量(一般要求在5-10μm),手机行业中手机屏膜厚测量,背光屏镀层以及电路印刷版涂层厚度的测量。
MORE>>威尔创新地运用了新型的数字式传感器,线性精度比传统的数字式光栅传感器提高了5倍,微小轮廓的测量能力提高了10倍!这一举措,使SP2000系列轮廓仪在满足大量程测量需求的同时,亦能对零件表面的微小轮廓进行评估,典型的应用如深沟球轴承、桃形沟轴承、滚珠丝杠的沟道R值、沟形偏差、Pt值的测量。
MORE>>先临天远RobotScan机器人智能3D检测系统,以机器代替人工,可进行全自动、标准化三维扫描,快速获取工件的准确三维数据,并进行实时在线检测,输出检测报告。RobotScan为国内自主研发,可根据实际检测场景进行定制化开发,适用于现代工厂批量化3D尺寸检测,助力智能制造的高效高质发展。
MORE>>DigiMetric系统是先临天远自主研发的一套三维测量系统,采用多视点立体视觉技术,用于测量物体表面标志点的高精度三维坐标。DigiMetric系统可用于大型工件的三维扫描中,提升大型工件的三维数据拼接的准确性。
MORE>>先临天远RobotScan机器人智能3D检测系统,以机器代替人工,可进行全自动、标准化三维扫描,快速获取工件的准确三维数据,并进行实时在线检测,输出检测报告。RobotScan为国内自主研发,可根据实际检测场景进行定制化开发,适用于现代工厂批量化3D尺寸检测,助力智能制造的高效高质发展。
MORE>>DigiMetric系统是先临天远自主研发的一套三维测量系统,采用多视点立体视觉技术,用于测量物体表面标志点的高精度三维坐标。DigiMetric系统可用于大型工件的三维扫描中,提升大型工件的三维数据拼接的准确性。
MORE>>FreeScan Trak Pro2跟踪式激光三维扫描系统延续了FreeScan Trak Pro高精度且重复性精度稳定、无需贴点等优势,并在扫描效率上进行了大幅提升,共计58条蓝色激光线,扫描速度可高达368万次/秒,能够快速、轻松获取大中型样件完整准确的三维数据,适用于汽车工业、轨道交通、能源领域等制造业的中大型三维扫描静态/动态场景。
MORE>>FreeScan Trak ProL大范围跟踪式激光三维扫描系统,延续了FreeScan Trak Pro2高精度且重复性精度稳定、无需贴点、扫描快速等优势,进一步扩大了测量范围,单站点跟踪范围扩大至128m³,在进行完整数据获取时可以减少跟踪仪转站次数,提高效率的同时保证数据准确性。适用于汽车工业、轨道交通、能源领域等制造业大型工件的尺寸测量。
MORE>>• 可配置接触式测头、扫描测头和光学测头系统的 CNC三坐标测量机。
• 各轴均配备气浮导轨的动态高精度系列。
• 控制器和计算机集成于一个工作台。
• 多种规格,可为所需测量范围提供非常好的选择。
拥有了 LH 系列产品,您可以从这台运行可靠、易于操作的机器上受益于其高性能、高效率和高灵活性的测量。我们坐标测量机的成功基于其久经考验的整体设计理念,包括先进的工程设计、智能的软件、丰富的配件选择以及综合服务。稳定、可靠、高速的 LH 系列产品是一种适用于不同应用的通用灵活的测量仪器。采用目前先进的气浮轴承,温泽在精度、效率和使用寿命方面也不断取得进步。LH革新的设计树立了高机械精度、完美的人体工程学设计和动力学性能的形象。LH系列的CMM 还能为您提供标准级、高精度级和高精度优选级三个级别的精度。
MORE>>PMT GAMMA 7轴关节臂同样提供P、M、E三种精度和7种量程规格选择,此系列在确保测量精度的同时还保障了测量的灵活性和效率,同样8轴拓展且可灵活搭载GH或GS新-代蓝光扫描头。对于寻求稳健、可靠、需求多样性的工厂或车间检测的公司,这是一款两相皆宜的选择。
使用派姆特GAMMA关节臂可通过快速地检测过程来控制质量、减少废品和提高生产效率。
PMT GAMMA 6轴关节臂提供P、M、E三种精度选择,覆盖1.5至4.5米测量范围,此系列关节臂测量精度可高达0.012mm。
全球首创外解耦内置平衡机构,性能卓越,大大降低设备使用过程中关节受力负载,显著提升了设备的稳定性和操作时的高度灵活性。此外,GAMMA全系列均支持8轴拓展可配备多种智能测头,全面满足您的多样化需求。
Quantum X 的灵活性和多功能性是关键。该系列通过了 ISO 10360(行业非常高的标准)认证,提供五种长度选项、三种精度性能级别和多种激光测头 (LLP)。新增的 FARO®8-Axis Max 是一个 8 轴旋转工作台,可将测量时间缩短达 40%,同时保持卓越的精度。
MORE>>全新推出的 Quantum Max ScanArm 及其三款热插拔 LLP 能够满足任何测量需求,让这一传统继续发扬光大。利用可极大提升扫描速度或分辨率的选项,快速而精确地完成测量工作从未如此简单。凭借非常大的灵活性、更大的臂展范围和重新设计的具有双活动式 LLP 安装座的末端操作机构,让创造的价值和生产力可提升30% 以上。
MORE>>SmartAxis系列对射测量传感器采用双远心高分辨率光学镜头,高亮度LED和远心光学系统构成的光源,提高了对场所、角度的均匀性;结合软件高精度图像分析算法、亚像素边缘提取并利用毛刺过滤算法自动去除边缘毛刺、黑色阴影及白色亮边等影响,大幅提升了测量重复性和精度;可选配的多种组合照明系统,满足用户对复杂工件的快速准确测量。
MORE>>核心部件采用1:1成像、分辨率1200DP的接触式图像传感器集光源、镜头、光电转换芯片为一体,无论是光滑表面还是复杂纹理,都能对产品进行逐行、高速、高精度的扫描,避免由于图像畸变及边缘虚化所带来的分辨率损失问题,减轻后续图像处理环节的负担。
MORE>>在现代制造业的精密测量领域中,圆度仪无疑占据着非常关键的地位,其主要功能在于精准评估物体的圆度误差。而谐波分析技术堪称圆度仪提升测量精度的核心手段,它通过对圆度误差数据的频率分量进行分解,实现了误差类型的精准识别与来源的准确追溯。
本文旨在探讨圆度仪谐波分析测量的原理、应用及其在高精密设备领域的重要性。
圆度仪谐波分析测量原理
圆度误差是衡量物体形状精度的重要指标之一,对设备的性能和使用寿命具有重要影响。随着现代制造业的发展,对圆度误差的测量精度要求越来越高。圆度仪作为一种专业的测量工具,其测量精度直接关系到产品的质量和企业的竞争力。谐波分析技术作为提升圆度仪测量精度的有效手段,逐渐受到广泛关注。
谐波分析技术通过傅立叶变换等方法,将圆度误差数据分解为不同频率分量。这些频率分量反映了误差的周期性特征和不同来源的误差类型。通过对这些频率分量的分析,可以精准识别误差的类型和来源,从而指导制造或加工过程中的问题剖析和解决方案的制定。
圆度及谐波分析图形
马尔圆度仪谐波分析测量的应用和优势
马尔圆度仪的谐波分析测量技术广泛应用于高精密机床、轴承等对圆度有着苛刻要求的设备领域。在这些关键领域,设备的数字控制精度与质量至关重要。马尔谐波分析技术能够确保设备的圆度误差得到有效控制,从而显著提高设备的稳定性和可靠性,为高端制造业的精密生产环节提供了坚实的技术支撑。
其中,马尔独特的密珠轴承转台,运用了马尔专有的密珠轴承技术。相较于空气轴承,在环境不敏感度方面提升了 70 倍之多,而在精确度上却毫不逊色。
凭借多年的行业积累与丰富经验,马尔匠心独运地融合了特殊的生产工艺与优质的生产材料,制造出了堪比优质空气轴承精度而无传统机械轴承弱点的机械密珠轴承。即使在恶劣的工作环境条件下,依然保持其良好的可靠性和精确度!正是有这样的精密机械轴承作为硬件基石,才能保证马尔圆度仪在圆度谐波分析测量中长期维持超高精度以及卓越的重复性表现。
马尔MMQ 系列密珠轴承转台
马尔圆度仪谐波分析测量技术是提升精度的关键,在现代制造业中具有广泛的应用前景。其谐波分析(快速傅里叶分析)可精准测圆度误差并追溯来源,助力制造加工质量控制。
未来,随着技术的不断发展,马尔的测量设备和测量应用技术将在更多领域得到应用和推广,为制造业的转型升级和高质量发展贡献力量。
OPT(奥普特)一键测量传感器SmartFlash集成了机器视觉的边缘提取、自动匹配、自动对焦、自动学习及图像合成等人工智能技术,采用双远心光路及多角度照明系统设计,搭载高精度运动平台,并通过亚像素边缘提取算法处理图像,具有高精度四重保证措施,精度达微米级。
精准测量是支撑高质量制造的基石。先临三维的高精度工业3D扫描技术作为一种光学测量工具,凭借其高精度、高效率、非接触等优势,为高端制造的精密三维尺寸检测提供保障。当下,这项技术已经渗透至到汽车工业、航天制造、电子电器、教育科研等行业,满足了不同用户对三维尺寸检测的需求。
影像仪主要利用光学成像系统将物体的轮廓、表面特征等形成光学影像,然后通过电荷耦合器件(CCD)相机或者互补金属氧化物半导体(CMOS)相机进行图像采集。这些图像被传输到计算机软件系统中,软件会根据预先设定的测量算法和参照标准来分析处理图像,从而得出物体的各种尺寸参数(如长度、宽度、高度、直径等)、形状误差(如圆度、直线度等)以及位置关系(如孔的中心距等)。
金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称,包括纯金属、合金、金属材料金属间化合物和特种金属材料等,金属的成分组成是决定材料性能的主要因素,因此了解金属成分及性能,能更好地应用材料,相比于传统的滴定法、分光光度法等检测方法,X射线荧光光谱仪(XRF)具有无损分析、检测效率高、速度快等优点,是目前金属材料领域常见的分析方法。